Activation of the LKB1-SIK1 signaling pathway inhibits the TGF-β-mediated epithelial-mesenchymal transition and apoptosis resistance of ovarian carcinoma cells
نویسندگان
چکیده
Ovarian cancer is the most common and lethal type of gynecological malignancy, due to its invasiveness. The present study aimed to analyze the molecular mechanism underlying chemoresistance in ovarian carcinoma cells, which may lead to local migration toward adjacent tissues and long‑distance metastasis to other organs. A total of 12 patients with ovarian fibroma were used to evaluate chemoresistance and chemosensitivity. The sensitivity and resistance of ovarian carcinoma cells was measured using apoptosis analysis, morphological observation, survival rate analysis, immunohistochemistry and immunostaining. The mechanism underlying the interaction between the epithelial‑mesenchymal transition (EMT) and liver kinase B1 (LKB1)‑salt‑inducible kinase 1 (SIK1) signaling pathways was additionally investigated in ovarian carcinoma. The results of the present study demonstrated that ovarian carcinoma cells isolated from patients exhibited apoptosis resistance. Inhibition of TGF‑β expression led to an inhibition of growth, migration and invasion, in addition to a promotion of apoptosis, in ovarian carcinoma cells treated with paclitaxel. Studies have indicated that the LKB1‑SIK1 signaling pathway may be suppressed in ovarian carcinoma cells compared with normal ovarian cells, leading to activation of the EMT signaling pathway. The results of the present study demonstrated that upregulation of LKB1 promoted SIK1 expression and markedly suppressed the growth and aggressiveness of ovarian cancer cells. Upregulation of LKB1 additionally promoted apoptosis in ovarian carcinoma cells. In addition, the results of the present study demonstrated that the knockdown of LKB1 further promoted the expression of transforming growth factor‑β and EMT, which downregulated the chemosensitivity of ovarian carcinoma cells. Additionally, overexpression of LKB1 in ovarian carcinoma cells increased chemosensitivity, resulting in a significant inhibition of migration and invasion. The present findings indicated that the enhancement of LKB1‑SIK1 suppressed the growth and aggressiveness of ovarian carcinoma cells isolated from clinical patients, which subsequently contributed to an inhibition of metastatic potential. In conclusion, targeting the LKB1‑SIK1 signaling pathway to inhibit EMT may provide potential therapeutic benefits in ovarian carcinoma.
منابع مشابه
Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non–small cell lung cancer cells
BACKGROUND Radiotherapy is one of the main therapeutic approaches for non-small cell lung cancer (NSCLC). However, radioresistant cancer cells can eventually cause tumor relapse and even fatal metastasis. It is thought that radioresistance and metastasis could be potentially linked by epithelial-mesenchymal transition (EMT). In this study, we established radioresistant NSCLC cells to investigat...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملShcA Protects against Epithelial–Mesenchymal Transition through Compartmentalized Inhibition of TGF-β-Induced Smad Activation
Epithelial-mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitme...
متن کاملAMPK Inhibits the Stimulatory Effects of TGF-β on Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition.
AMP-activated protein kinase (AMPK), an important downstream effector of the tumor suppressor liver kinase 1 (LKB1) and pharmacologic target of metformin, is well known to exert a preventive and inhibitory effect on tumorigenesis; however, its role in cancer progression and metastasis has not been well characterized. The present study investigates the potential roles of AMPK in inhibiting cance...
متن کامل